Four Large Amicable Pairs

By H. J. J. te Riele

Abstract

This note gives a report of systematic computer tests of Euler's rule and several Thabit-ibn-Kurrah-rules, in search of large amicable pairs. The tests have yielded four amicable pairs, which are much larger than the largest amicable pair thus far known.

1. The pair of 25 -digit numbers
(45222 6553454520 8537974785, 4539801326233928286140415)
has been the largest known amicable pair since 1946 ([8], [10]). This note gives four new amicable pairs with 32-, 40-, 81-, and 152 -digit numbers, as a result of systematic computer tests by Euler's rule (Section 2) and several Thabit-ibn-Kurrah-rules (Sections 3 and 4).

In this research, primality of very large numbers N had to be established, where $N+1$ can be easily factorized; this was done by use of the following:

Theorem (Lucas-Lehmer [11, p. 442]). Let P and Q be relatively prime integers and let $U_{0}=0, U_{1}=1, U_{i+1}=P U_{i}-Q U_{i-1}$ for $i \geqq 1$. If N is a natural number, relatively prime to $2 P-8 Q$, and if $U_{N+1} \bmod N=0$, while $U_{(N+1) / p} \bmod N \neq 0$ for each prime p dividing $N+1$, then N is prime.

It is convenient to choose $P=1$, while Q has to be chosen such that $D^{(N-1) / 2} \bmod N$ $=-1$, where $D=P-4 Q$.

In the sequel, the indication " $(Q=A)$ " after a number means that primality of that number was established by use of this Lucas-Lehmer theorem, with $Q=A$. The computations were carried out on the Electrologica-X8 computer of the Mathematical Centre; the value of $U_{i} \bmod N$ was computed in $O(\log i)$ steps by use of the binary method (see [6, p. 360 (Exercise 15) and p. 421 (Exercise 26)]).
2. Euler's rule [4] for amicable numbers is given by: $2^{n} p q$ and $2^{n} r$ are amicable numbers, if the three integers $p=2^{n-m} f-1, q=2^{n} f-1$ and $r=2^{2 n-m} f^{2}-1$ are primes, with $f=2^{m}+1$ and $n>m \geqq 1$. For $m=1$, this rule is due to Thabit ibn Kurrah and yields amicable numbers for $n=2,4,7$, but for no other value $n \leqq 1000$ (see [12, p. 874]).* Only one more solution of Euler's rule was known thus far, viz., $m=7, n=8$ (Legendre, Chebyshev).

A systematic computer search for triples (p, q, r) such that both p, q and r are primes was carried out for all values of n, m with $n>m>1$ and $r<10^{132}$; this search yielded just one new solution, viz., $m=11, n=40$. Thus we have the new 40 -digit amicable numbers:

[^0]Copyright © 1974, American Mathematical Society

$$
\begin{aligned}
& m_{1}=2724918040393706557785752240819405848576=2^{40} p q, \\
& m_{2}=2724918040396184856306258038787235905536=2^{40} r,
\end{aligned}
$$

with

$$
\begin{aligned}
& p=2^{29} 3.683-1=1100048498687 \quad(Q=-1), \\
& q=2^{40} 3.683-1=2252899325313023(Q=-13), \\
& r= 2^{69} 3^{2} 683^{2}-1=2478298520505800166853312511(Q=-4)
\end{aligned}
$$

and

$$
m_{1} / m_{2} \approx 1-2^{-40}
$$

3. Definition. A Thabit-ibn-Kurrah-rule or Thabit-rule

$$
T\left(b_{1}, b_{2}, p, c_{1} X-1, c_{2} X-1\right)
$$

with given natural numbers b_{1}, b_{2}, a prime p, and linear polynomials

$$
c_{1} X-1, c_{2} X-1 \in Z[X]
$$

is a statement of the form:

```
\(p^{n} b_{1}\left(c_{1} p^{n}-1\right)\) and \(p^{n} b_{2}\left(c_{2} p^{n}-1\right)\) are amicable numbers, if \(q_{i}=c_{i} p^{n}-1\)
is prime and prime to \(b_{i}\) for \(i=1,2(n=1,2, \cdots)\).
```

For a more general definition see [2].
Walter Borho [2] presents a list of fifteen Thabit-rules, which are constructed from those amicable numbers of the form $a u$, as (with ($a, u s$) $=1, s$ prime), for which $p=u+s+1$ is prime. Table 1 presents another seven Thabit-rules, constructed in the same way; this completes the list of Thabit-rules which can be constructed from the (at least) 67 published ([8], [9], [10], [2]) amicable pairs of the form au, as with $(a, u s)=1, s$ prime.

Table 1
Seven new Thabit-rules $T(a u, a, p,(u+1) X-1,(u+1) \sigma(u) X-1)$ obtained from amicable pairs au, as (with $(a, u s)=1, s$ prime) such that $p=u+s+1$ is prime.

No.	a	u	$\sigma(u)$	p	obtained from pair no.
(i)	$3^{27} 7^{2} 13 \cdot 19 \cdot 29$	$41 \cdot 173=7093$	7308	14401	(33) of [3]
(ii)	$3{ }^{4} 5 \cdot 11^{271}$	$709 \cdot 2129=1509461$	1512300	3021761	(31) of [3]
(iii)	327211-19-43-89	$293 \cdot 22961=6727573$	6750828	13478401	$\begin{aligned} & \text { (8) of [5] top of } \\ & \text { p. } 168 \end{aligned}$
(iv)	$2^{3} 31$	$17 \cdot 107 \cdot 4339=7892641$	8436960	16329601	(34) of [3]
(v)	2^{8}	$257 \cdot 33023=8486911$	8520192	17007103	(17) of [3]
(vi)	$2^{3} 19 \cdot 137$	$83 \cdot 218651=18148033$	18366768	36514801	(2) of [7]
(vii)	27263	$4271 \cdot 280883=1199651293$	1199936448	2399587741	(18) of [3]

In the fifteen Thabit-rules of Borho, and the seven, given here, the numbers $q_{1}=(u+1) p^{n}-1$ and $q_{2}=(u+1) \sigma(u) p^{n}-1$ were tested for primality, for all values of $n \geqq 1$ such that $q_{2}<10^{120}$. Both q_{1} and q_{2} appeared to be prime in only three cases; these cases, together with those of Borho and Lee (see [2]) are listed in

Table 2. Table 2 also mentions the discoverers of the amicable pairs from which the Thabit-rules were obtained.

Table 2
Five cases in which Thabit-rules yield amicable pairs.

	obtained from an amicable pair discovered by	value of n for which both q_{1} and q_{2} are primes	discovered by
Thabit-rule	Pythagoras (?)	2	Borho
of [2]	Euler	1	Lee
6 of $[2]$	Euler	19	te Riele
(i) of Table 1	Escott	8	te Riele
(ii) of Table 1	Escott	1	te Riele

Next follow the details of the three new amicable pairs. Thabit-rule 6 of [2], $n=19$, yields the 152 -digit amicable numbers:

$$
\begin{array}{rllllll}
m_{1} & =86 & 2593766501 & 4359638769 & 0953818787 & 1666597148 & 4088835777 \\
4281383581 & 6831022646 & 6591332953 & 3162256868 & 3649647747 \\
2706738497 & 3129580885 & 3683841099 & 1321499127 & 6380031055 \\
& =3^{4} 5 \cdot 11 \cdot 52811^{19} 29 \cdot 89 \cdot q_{1}, & & & \\
m_{2} & =902364653062 & 3313066515 & 5201592687 & 0786444130 & 4548569003 \\
& 8961540360 & 5363719932 & 5828701918 & 5759580345 & 2747004992 \\
& 7532312907 & 0333233826 & 7840675607 & 3892061566 & 6452384945
\end{array}
$$

with

$$
(Q=-4)
$$

and $m_{1} / m_{2}=.955926$.
Thabit-rule (i), $n=8$, yields the 81 -digit amicable numbers:
with

$$
\begin{array}{r}
q_{1}=2 \cdot 3547 \cdot 14401^{8}-1=13122977591352752053026748464924755893 \\
\quad(Q=-15),
\end{array}
$$

$$
\begin{aligned}
& m_{1}=543922583300492702317452603514092645181014270450011 \\
& 052297723490314528334873070667 \\
& =3^{2} 7^{2} 13 \cdot 19 \cdot 29 \cdot 14401^{8} 41 \cdot 173 \cdot q_{1} \text {, } \\
& m_{2}=560409733365289816514301935215140145394856000068942 \\
& 034236043633622622933462548533 \\
& =3^{2} 7^{2} 13 \cdot 19 \cdot 29 \cdot 14401^{8} q_{2},
\end{aligned}
$$

$$
\begin{aligned}
& q_{1}=2 \cdot 1291 \cdot 5281^{19}-1=\begin{array}{r}
13917570188877597630885553289918626 \\
7927088632551744230583288018723382689621
\end{array} \\
& \text { (} Q=-7 \text {), } \\
& q_{2}=2^{3} 3^{3} 5^{2} 1291.5281^{19}-1=37577439509969513603390993882780292340 \\
& 3139307889709422574877650553133261979399
\end{aligned}
$$

$$
\begin{aligned}
q_{2} & =2^{3} 3^{2} 7 \cdot 29 \cdot 3547 \cdot 14401^{8}-1 \\
& =95902720237605912003519477781670116073351(Q=-24)
\end{aligned}
$$

and $m_{1} / m_{2}=.970580$.
Thabit-rule (ii), $n=1$, yields the 32 -digit amicable numbers:
$m_{1}=72387411447682075955209400624355=3^{4} 5 \cdot 11^{2} 71 \cdot 3021761 \cdot 709 \cdot 2129 \cdot q_{1}$,
$m_{2}=72523557966952179528659056738845=3^{4} 5 \cdot 11^{2} 71 \cdot 3021761 \cdot q_{2}$,
with

$$
\begin{aligned}
& q_{1}=2 \cdot 3^{3} 27953 \cdot 3021761-1=4561233402581(Q=-3), \\
& q_{2}=2^{3} 3^{4} 5^{2} 71^{2} 27953 \cdot 3021761-1=6897953274724758599(Q=-3)
\end{aligned}
$$

and $m_{1} / m_{2}=.998123$.
Remark. The two previous examples, of size 81D and 152D, offer contrary evidence to the conjecture [1] that if there exists an infinity of amicable pairs (m_{1}, m_{2}) with $m_{1}<m_{2}$, then $\lim _{m_{1} \rightarrow \infty} m_{1} / m_{2}=1$.
4. Table 2 of [2] lists five more Thabit-rules, which differ slightly from the Thabitrules mentioned above in Section 3. The numbers q_{1} and q_{2} occurring in these five Thabit-rules were also tested for primality, for all $n \geqq 1$ with $q_{2}<10^{120}$. The results were negative in the sense that no pairs $\left(q_{1}, q_{2}\right)$ were found with both q_{1} and q_{2} prime.

Acknowledgement. I would like to thank Mr. E. J. Lee for his suggestion to investigate the non-Thabitean case of Euler's rule (Section 2).

Mathematical Centre
2° Boerhaavestraat 49
Amsterdam, The Netherlands

[^1]
[^0]: Received November 30, 1972.
 AMS (MOS) subject classifications (1970). Primary 10A40; Secondary 10A25, 10-04.
 Key words and phrases. Amicable numbers, Lucas-Lehmer test.

 * This corrects an error in [2, p. 571, footnote]. W. Borho has asked me to point out here, that his quotation of a correct, private communication of E. J. Lee was incorrect.

[^1]: 1. J. Alanen, O. Ore \& J. Stemple, "Systematic computations on amicable numbers," Math. Comp., v. 21, 1967, pp. 242-245. MR 36 \# 5058.
 2. W. Borнo, "On Thabit ibn Kurrah's formula for amicable numbers," Math. Comp., v. 26, 1972, pp. 571-578.
 3. E. B. Escott, "Amicable numbers," Scripta Math., v. 12, 1946, pp. 61-72. MR 8, 135.
 4. L. Euler, De Numeris Amicabilibus, Leonhardi Euleri Opera Omnia, Teubner, Leipzig and Berlin, Ser. I, vol. 2, 1915, pp. 63-162.
 5. M. García, "New amicable pairs," Scripta Math., v. 23, 1957, pp. 167-171. MR 20 \#5158.
 6. D. E. Knuth, The art of computer programming. Vol. 2. Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1969. MR 44 \#3531.
 7. E. J. Lee, "Amicable numbers and the bilinear diophantine equation," Math. Comp., v. 22, 1968, pp. 181-187. MR 37 \# 142.
 8. E. J. Lee \& J. S. Madachy, "The history and discovery of amicable numbers-part 1," J. Recreational Math., v. 5, 1972, pp. 77-93.
 9. E. J. Lee \& J. S. MADACHY, "The history and discovery of amicable numbers-part 2," J. Recreational Math., v. 5, 1972, pp. 153-173.
 10. E. J. Lee \& J. S. Madachy, "The history and discovery of amicable numbers-part 3," J. Recreational Math., v. 5, 1972, pp. 231-249.
 \rightarrow D. H. Lehmer, "An extended theory of Lucas' functions," Ann. of Math., v. 31, 1930, pp. 419-448.
 11. H. Riesel, "Lucasian criteria for the primality of $N=h \cdot 2^{n}-1$," Math. Comp., v. 23, 1969, pp. 869-875. MR 41 \#6773.
